LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Open surface multifunctional droplet manipulation platform fabricated by micromilling

Photo by osmanrana from unsplash

Superhydrophobic surfaces patterned with hydrophilic groove structures have promising applications in microfluidics. In this work, hydrophilic groove patterns with stable wettability were created directly on superhydrophobic Al surface by micromilling.… Click to show full abstract

Superhydrophobic surfaces patterned with hydrophilic groove structures have promising applications in microfluidics. In this work, hydrophilic groove patterns with stable wettability were created directly on superhydrophobic Al surface by micromilling. Feasibility of applying diverse milled hydrophilic patterns, including dimples, ring grooves and reservoirs connected by winding channels in a variety of droplet manipulations, such as water/oil/air storage, water transport, etc. was tried out. Experimental results showed that the milled dimples and ring grooves on the superhydrophobic background can function as a multifunctional platform for storing micro-liter sized water, oil and gas bubbles; two milled reservoirs connected by a milled channel can serve as a open surface microfluidics to transport liquid using Laplace pressure difference. On the basis of the liquid transport between two reservoirs, more sophisticated liquid handling such as droplet separation and mixing were achieved by transporting liquid among multiple reservoirs. It is thus clear that the micromilling is a quite suitable approach to create complex hydrophilic groove structures on superhydrophobic background for applications to diverse interface-driven microfluidics.

Keywords: hydrophilic groove; droplet; surface; open surface; platform; surface multifunctional

Journal Title: Journal of Materials Science
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.