LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Influence of Cu/Mg ratio on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys

Photo from wikipedia

The relationship between microstructure evolution and mechanical performance of Al–Zn–Mg–Cu alloys with varying Cu/Mg ratios was discussed in detail under different two-step aging (T7X). The results showed that the undissolved… Click to show full abstract

The relationship between microstructure evolution and mechanical performance of Al–Zn–Mg–Cu alloys with varying Cu/Mg ratios was discussed in detail under different two-step aging (T7X). The results showed that the undissolved second-phase particles including σ -Al 7 Cu 2 Fe and T-Al 2 Mg 3 Zn occurred in the quenched Al–Zn–Mg–Cu alloys. When the Cu/Mg ratio approaches 1.64, the S-Al 2 CuMg phase was also observed. Although the Cu/Mg ratio did not change the precipitation sequence of the Al–Zn–Mg–Cu alloys, it changed the coarsening rate and precipitate size distribution during aging process. The Al–Zn–Mg–Cu alloy with the lowest Cu/Mg ratio has the slowest coarsening rate and the highest strength (655 MPa). The fracture morphology of Al–Zn–Mg–Cu alloys changes from the typical brittle fracture to the intergranular-dominated mixed fracture mode or ductile fracture when the Cu/Mg ratios increases. Besides, the T79-aged alloys with varying Cu/Mg ratios have similar grain boundary precipitates (GBPs) and precipitate-free zones (PFZs). The T74-aged alloys with higher Cu/Mg ratio have more coarser GBPs and wider PFZs.

Keywords: fracture; ratio; microstructure mechanical; ratio microstructure; influence ratio; microstructure

Journal Title: Journal of Materials Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.