LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

On the temperature-dependent diffusion growth of ϕ-Mg5Al2Zn2 ternary intermetallic compound in the Mg–Al–Zn system

Photo from wikipedia

The study on the temperature-dependent kinetic behavior of intermetallic compounds (IMCs) in Mg–Al–Zn (AZ) series alloy system is important since its close interrelation with the microstructure evolution under various alloying… Click to show full abstract

The study on the temperature-dependent kinetic behavior of intermetallic compounds (IMCs) in Mg–Al–Zn (AZ) series alloy system is important since its close interrelation with the microstructure evolution under various alloying conditions as well as the T-dependent performance. However, there is a very lack of experimental study on the diffusion kinetics of the ternary IMCs in the AZ series alloy systems. The current work combines the diffusion couple technique and numerical inverse method to investigate the T-dependent kinetic coefficients, i.e., the parabolic growth constant (PGC) and interdiffusion coefficients, for ϕ - Mg 5 Al 2 Zn 2 ternary IMC in the Mg–Al–Zn alloy system. The Arrhenius formula of both PGC and main interdiffusivities is obtained, i.e., $${}_{{}}^{\phi } k_{p} = 5.48 \times 10^{ - 5} \exp \left( {\frac{120010}{{RT}}} \right)$$ ϕ k p = 5.48 × 10 - 5 exp 120010 RT m 2 /s, $${}_{{}}^{\phi } \tilde{D}_{{{\text{MgMg}}}}^{Al} = 3.48 \times 10^{ - 10} \exp \left( {\frac{50420}{{RT}}} \right)$$ ϕ D ~ MgMg Al = 3.48 × 10 - 10 exp 50420 RT m 2 /s and $${}_{{}}^{\phi } \tilde{D}_{{{\text{ZnZn}}}}^{Al} = 2.87 \times 10^{ - 7} \exp \left( {\frac{91440}{{RT}}} \right)$$ ϕ D ~ ZnZn Al = 2.87 × 10 - 7 exp 91440 RT m 2 /s, based on which a numerical reproduction of the experimentally determined IMC growth is performed for verification. By comparing the current experimental and calculation results, the rate-controlling factor of the temperature-dependent diffusion growth of ϕ ternary IMC in the Mg–Al–Zn system is further discussed.

Keywords: diffusion growth; dependent diffusion; system; temperature dependent; growth

Journal Title: Journal of Materials Science
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.