LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

In-situ and ex-situ PIT fabrication of FeSe superconducting tapes

Photo by kellysikkema from unsplash

FeSe Superconducting tapes were fabricated with powder in tube (PIT) process. Both in-situ and ex-situ PIT processes were performed with Se and sintered Fe–Se powders as precursor powders, respectively. The… Click to show full abstract

FeSe Superconducting tapes were fabricated with powder in tube (PIT) process. Both in-situ and ex-situ PIT processes were performed with Se and sintered Fe–Se powders as precursor powders, respectively. The influences of different fabrication techniques on the phase evolution mechanism, morphology and superconducting properties of these tapes were systematically investigated. It was noticed that during the in-situ PIT process, large content of tetragonal β-FeSe phase could be formed under low temperature. However, the obtained β-FeSe phase was not stable with increasing temperature and decomposed into δ-FeSe and Fe. Although with increasing temperatures, β-FeSe phase content increased again, the final β-FeSe phase content could not reach 100%, with relatively large content of δ-FeSe particles distributed uniformly in β-FeSe matrix. On the other hand, during the ex-situ PIT process, higher temperature was necessary for the formation of higher ratio of β-FeSe phase from δ-FeSe phase. With the increasing temperature, β-FeSe phase content increased monotonously, and the β-FeSe content of nearly 100% was obtained under the sintering temperature of 1000 °C. Due to the different Fe/Se ratio in the obtained β-FeSe phase, a superconducting transition at 8.3 K was obtained on the ex-situ FeSe tape. Further optimization of this PIT process for larger superconducting phase content is on the way.

Keywords: pit; fese phase; temperature; situ pit

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.