LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A facile synthesis of TiO2/SiO2/CdS-nanocomposites ‘optical and electrical’ investigations

Photo from wikipedia

The controlled synthesis of TiO2/SiO2/CdS-nanocomposites fabrication by hydrothermal assisted route has been successfully performed. Without any doubt this novel strategy is one of the central issues in current Nanotechnology and… Click to show full abstract

The controlled synthesis of TiO2/SiO2/CdS-nanocomposites fabrication by hydrothermal assisted route has been successfully performed. Without any doubt this novel strategy is one of the central issues in current Nanotechnology and Materials Science. Those hybrid nanocomposites were characterized by spectroscopes and electron microscopic in several investigations, e.g. X-ray diffraction (XRD), Raman spectroscopy, UV–visible spectroscopy, Scanning electron microscope (SEM) and dielectric dispersion. The average grain size was found to be 28 nm by using X-ray diffraction analysis and nanocomposites were confirmed by the Scanning Electron Microscopy (SEM). The well crystalline distinguishable peak shifts of individual composite materials (e.g. Anatase titanium, SiO2, CdS) were carried out by the Raman spectrum. Indeed, optical properties were obtained by UV–visible absorption spectrum and the calculated optical band gap of the nanocomposite was found to be 3.31 eV. Moreover, typical investigations of dielectric behavior, e.g. dielectric constant, dielectric loss, and AC conductivity properties were also carried out at different frequencies and ambient conditions of temperatures. A successful attempt revealed through this performance puts the hybrid nanostructure at the top level in the state of the art in application oriented research in high crystalline composite materials.

Keywords: tio2 sio2; synthesis tio2; sio2 cds; spectroscopy; cds nanocomposites

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.