LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of aging temperature on tensile and fatigue behavior of Sn-3.0Ag-0.5Cu solder joints

Photo from wikipedia

Thermal aging effects on the tensile and fatigue properties of Sn-3.0Ag-0.5Cu (wt%, SAC305) solder joint are investigated. Three series of experiments were conducted at different temperatures, including uniaxial tension experiments… Click to show full abstract

Thermal aging effects on the tensile and fatigue properties of Sn-3.0Ag-0.5Cu (wt%, SAC305) solder joint are investigated. Three series of experiments were conducted at different temperatures, including uniaxial tension experiments for specimens after aging for 24 and 72 h, and low cycle fatigue experiments for specimens after aging for 72 h. The tensile strength and fatigue life of SAC305 solder joint were analyzed statistically by using a modified Weibull distribution model, which takes the thermal aging effect into account and the results agrees well with the experimental data. The maximum tensile strength after aging for 24 h was obtained by aging at room temperature. After aging for 72 h, the maximum tensile strength and longest fatigue life were obtained by aging at the cryogenic temperature. With elevated aging temperatures, the tensile strength and fatigue life decrease. Microstructure observations on the solder joints reveal that with reducing of aging temperatures, the Ag3Sn phase gradually grows and occupies more volume while Cu6Sn5 phase occupies less volume. The high content of Ag3Sn phase can embrittle the solder joint and dominate the tensile failure.

Keywords: tensile strength; temperature; 0ag 5cu; solder joints; solder; tensile fatigue

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.