LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Low temperature bonding with high shear strength using micro-sized Ag particle paste for power electronic packaging

Photo from wikipedia

Bonding technology using a Ag nanoparticle paste has been a promising substitute for high-Pb-containing solder joining. However, it has some drawbacks, such as high cost and low compatibility, due to… Click to show full abstract

Bonding technology using a Ag nanoparticle paste has been a promising substitute for high-Pb-containing solder joining. However, it has some drawbacks, such as high cost and low compatibility, due to its high sintering temperature. Recently, the bonding process using the micro-sized Ag particle paste has been studied for cost-effectiveness, but it is limited in terms of high applied pressure or relatively low joint strength. In this study, a low pressure of 0.4 MPa was applied during bonding by micro-sized Ag particle paste for lower bonding temperature and higher joint strength. The micro-sized Ag paste was composed of chestnut-burr-like and spherical particles. Under low applied pressure, the joint with a high shear strength of 54.6 MPa was achieved when the bonding temperature and time were 260 °C and 10 min, respectively. It was also possible to reduce the bonding temperature and time for the joints having similar strength to that of the pressureless process. The microstructure showed a linear relationship to the shear strength, regardless of the bonding conditions.

Keywords: strength; temperature; sized particle; paste; micro sized; particle paste

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.