A reduction of the particle size used in solder pastes was shown to affect the electrical and mechanical properties of finely printed solder bumps. Sn–3.0Ag–0.5Cu solder nanoparticles were synthesized using… Click to show full abstract
A reduction of the particle size used in solder pastes was shown to affect the electrical and mechanical properties of finely printed solder bumps. Sn–3.0Ag–0.5Cu solder nanoparticles were synthesized using a radio frequency thermal plasma system, and solder pastes were formulated for reverse-offset printing of solder bump arrays with a size of 30 µm. As the nanoparticle ratio in the paste increased, the degree of supercooling, ΔT, increased with a separation of the exothermic peaks for the solidification of β-Sn and the precipitation of intermetallic compounds (IMCs). The networks of finely precipitated IMCs formed at the boundaries of large β-Sn increased the shear strength to 73 MPa. However, insufficient flux deteriorated the electrical and mechanical properties because it delayed the solidification of primary β-Sn as well as the melting of the solder. As a result, the Sn–3.0Ag–0.5Cu solder paste containing a nanoparticle ratio of 25% exhibited an optimum printability for reverse-offset printing of solder bumps, and the resulting bumps had an electrical conductance of 0.4 mΩ and a shear strength of 73 MPa.
               
Click one of the above tabs to view related content.