LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of particle size distribution on the mechanical and electrical properties of reverse-offset printed Sn–Ag–Cu solder bumps

Photo from wikipedia

A reduction of the particle size used in solder pastes was shown to affect the electrical and mechanical properties of finely printed solder bumps. Sn–3.0Ag–0.5Cu solder nanoparticles were synthesized using… Click to show full abstract

A reduction of the particle size used in solder pastes was shown to affect the electrical and mechanical properties of finely printed solder bumps. Sn–3.0Ag–0.5Cu solder nanoparticles were synthesized using a radio frequency thermal plasma system, and solder pastes were formulated for reverse-offset printing of solder bump arrays with a size of 30 µm. As the nanoparticle ratio in the paste increased, the degree of supercooling, ΔT, increased with a separation of the exothermic peaks for the solidification of β-Sn and the precipitation of intermetallic compounds (IMCs). The networks of finely precipitated IMCs formed at the boundaries of large β-Sn increased the shear strength to 73 MPa. However, insufficient flux deteriorated the electrical and mechanical properties because it delayed the solidification of primary β-Sn as well as the melting of the solder. As a result, the Sn–3.0Ag–0.5Cu solder paste containing a nanoparticle ratio of 25% exhibited an optimum printability for reverse-offset printing of solder bumps, and the resulting bumps had an electrical conductance of 0.4 mΩ and a shear strength of 73 MPa.

Keywords: particle size; printed solder; reverse offset; solder bumps; solder

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.