LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of doping Sr2+ on luminescence and abnormal thermal quenching behavior of silicate solid-solution green phosphor Ba9Lu2Si6O24:Eu2+

Photo from wikipedia

A novel Eu2+ ions doped silicate solid-solution green phosphors, (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25), have been successfully prepared by conventional sintering method. The Rietveld refinement result was taken to determine the pure phase… Click to show full abstract

A novel Eu2+ ions doped silicate solid-solution green phosphors, (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25), have been successfully prepared by conventional sintering method. The Rietveld refinement result was taken to determine the pure phase of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ (0 ≤ y ≤ 0.25). The characteristic optical properties, especially the thermal quenching properties were studied. The excitation spectra of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ span from 350 to 460 nm. When the Sr2+ contents increased, the dominate emission peak was found to red shift from 503 to 525 nm under n-UV excitation. The emission intensity of (Ba0.75Sr0.25)9Lu2Si6O24:0.14Eu2+ can reach 90% compared with the emission intensity of commercial phosphor LMS520B. Moreover, when the doping concentration of Sr2+ reaches 25%, the phosphor can obtain a smaller thermal quenching (TQ), which still kept 85% of the initial emission intensity when the temperature increased to 150 °C. The reason why the temperature stability increased along with the increasing Sr2+ ions was illustrated expressly through the schematic diagram and the activation energy calculated by Arrhenius equation. Moreover, the chromaticity index shifted from (0.2157, 0.4165) to (0.2812, 0.5744), and the color purity of (Ba1−ySry)9Lu2Si6O24:0.14Eu2+ increased from 32.36% to 56.82% with the concentration of Sr2+ changing from y = 0 to y = 0.25.

Keywords: thermal quenching; solution green; silicate solid; 9lu2si6o24 14eu2; phosphor; solid solution

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.