LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Optical properties of p-type SnOx thin films deposited by DC reactive sputtering

Photo by introspectivedsgn from unsplash

Refractive index (n), extinction coefficient (k), effective complex dielectric function (ε) and band gap energy (Eg) of p-type SnOx thin films from 0.75 to 4 eV are studied. 25 nm thick… Click to show full abstract

Refractive index (n), extinction coefficient (k), effective complex dielectric function (ε) and band gap energy (Eg) of p-type SnOx thin films from 0.75 to 4 eV are studied. 25 nm thick films were deposited by direct current (DC) magnetron sputtering in reactive argon and oxygen atmosphere at different relative oxygen partial pressure (OPP) followed by a post annealing treatment at 250 °C in air atmosphere for 30 min. The relative high Hall effect mobility (μ) of the SnOx was attributed to the dominant SnO phase in films grown at 15% OPP. Films deposited at 5 and 11% OPP showed incomplete Sn oxidation resulting in a mixture of Sn and SnO phases with lower hole mobility. Optical transmittance (T) and reflectance (R) are described by assuming a model where the p-type SnOx films are defined by a dispersion formula based on a generalization of the Lorentz oscillator model. The roughness of the films (r) was modeled by a Bruggeman effective medium approximation (BEMA). From the optical analysis, k in the visible spectral region show high values for films with phase mixture, while films with single SnO phase presented negligible values. Films with single SnO phase have low n, this latter result from the lower compact microstructure of these films. Also, energies associated to direct and indirect transitions of the Brillouin zone of the SnOx films were identified from the evaluated ε. Finally, the increase in the values of Eg energy was related to the increase in the SnO phase.

Keywords: thin films; snox; sno phase; films deposited; snox thin; type snox

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.