LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effects of graphene oxide on the electromigration lifetime of lead-free solder joints

Photo from wikipedia

Electromigration (EM) is the mass transport of atoms due to electron flow, which induces a disconnect in electronic packaging. Recently, EM has received growing attention because it occurs easily when… Click to show full abstract

Electromigration (EM) is the mass transport of atoms due to electron flow, which induces a disconnect in electronic packaging. Recently, EM has received growing attention because it occurs easily when the size of joints in electronic packaging is reduced for better integration. Many researchers tried to improve the EM properties of solder joints by adding minor elements or using composites. Some studies reported that adding graphene, which is widely researched in recent years, to electronic packaging could improve the EM property. However, there is a lack of research on the EM lifetime characteristics with other materials added to the solder, such as minor elements, composites, and graphene. In this study, the effect of graphene oxide (GO) powder in Sn–3.0Ag–0.5Cu Pb-free solder paste on the EM lifetime of the solder joint was investigated. Using the fabricated solder paste and a reflow process, the printed circuit board finished with organic solderability preservative on Cu pad and Ni/Au-finished ball grid array packages with solder balls were joined. Afterwards, EM tests were performed at an elevated temperature of 130 °C and a current density of 1.0 × 103 A/cm2. The EM lifetime increased as the amount of added GO powders increased. Notably, the addition of 0.2 wt% GO nearly doubled the EM lifetime in the solder joint compared to that without GO.

Keywords: graphene oxide; solder joints; electromigration; lifetime; solder; free solder

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.