LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Controllable preparation of three-dimensional porous WO3 with enhanced visible light photocatalytic activity via a freeze-drying method

Photo from wikipedia

Three dimensional porous WO3 was fabricated by a novel freeze-drying method using a polyvinyl alcohol (PVA)/phosphotungstic acid (H3PW12O40) aqueous solution as the precursor followed by calcination. Results revealed that WO3… Click to show full abstract

Three dimensional porous WO3 was fabricated by a novel freeze-drying method using a polyvinyl alcohol (PVA)/phosphotungstic acid (H3PW12O40) aqueous solution as the precursor followed by calcination. Results revealed that WO3 interconnected porous structures have channels of 3–10 µm and wall thicknesses of about 0.68 µm. Interestingly, the morphology and porous structure of WO3 samples can be well controlled by the amount of PVA and calcination temperature. To further demonstrate their potential application in photocatalysis, their photocatalytic activities for the photodegradation of Rhodamine B under visible light irradiation were investigated. It was found that the highest photocatalytic activity was obtained by using the WO3 porous sample which prepared by fixing the addition amount of PVA at 7.5% (relative to solvent) and the calcination temperature at 800 °C. The enhanced photocatalytic performance of WO3 can be attributed to the combined effects of increased surface area, the interconnected macroporous as well as the enhanced crystal quality.

Keywords: three dimensional; dimensional porous; freeze drying; porous wo3; drying method; wo3

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.