LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Effect of ZnO/WO3 additives on sintering behavior and microwave dielectric properties of (Sr,Ca)TiO3–(Sm,Nd)AlO3 ceramics

Photo by vladizlo from unsplash

The effect of ZnO/WO3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3–0.3(Sm0.75Nd0.25)AlO3 (7SCT–3SNA) ceramics prepared via conventional solid-state route were systematically investigated. All the samples… Click to show full abstract

The effect of ZnO/WO3 additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 0.7(Sr0.01Ca0.99)TiO3–0.3(Sm0.75Nd0.25)AlO3 (7SCT–3SNA) ceramics prepared via conventional solid-state route were systematically investigated. All the samples exhibited pure perovskite structures, and Ti4+ ions could be substituted by W6+ ions. While further increasing WO3 additives, the W6+ ions migrated into the lattice. The τf values of samples first became more positive, and then tended to move toward negative direction with increasing WO3 addition. Moderate ZnO/WO3 additives not only effectively reduced the sintering temperature from 1500 to 1330 °C but also improved the dielectric properties of 7SCT–3SNA ceramics. The 0.50 wt% ZnO doped 7SCT–3SNA sample with 1.00 wt% of WO3, sintered at 1330 °C for 4 h, was measured to show optimum microwave dielectric properties, with an εr of 45.12, a Q × f value of 51200 GHz (at 5.4 GHz), and τf value of + 2.68 ppm/°C.

Keywords: zno wo3; dielectric properties; microwave dielectric; wo3 additives; wo3

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.