LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3

Photo from archive.org

In this study, the radiative parameters were acquired from the UV absorption spectra and the luminescence spectra of Er3+ ions doped Er2O3–Al2O3–Na2O–P2O5 glasses. The intensity of each absorption spectrum was… Click to show full abstract

In this study, the radiative parameters were acquired from the UV absorption spectra and the luminescence spectra of Er3+ ions doped Er2O3–Al2O3–Na2O–P2O5 glasses. The intensity of each absorption spectrum was utilized to deduce the radiative parameters and the parameters (Ω2, Ω4 and Ω6) of Judd–Ofelt theory. The FTIR and the elastic moduli of the quaternary glasses are also investigated. Analysis of the FTIR suggested that the presence of Er3+ ions created bridging oxygens and polymerized the local structure around atoms. This procedure manifested itself from decreasing the bond length of O–P and increasing the O/P ratio. The polymerization of the phosphate structure increased the ultrasonic velocity and the rigidity of the network. The electrical parameters of the phosphate glasses, such as the frequency and temperature dependence AC conductivity, dielectric loss and dielectric modulus were carried out. The Er3+ ions affected the carrier mobility by decreasing the electrical conductivity and increasing the activation energy. In addition, the frequency and temperature dependence of the dielectric modulus exhibited a Debye-type relaxation behavior.

Keywords: study electrical; comprehensive study; study; electrical optical; er3 ions; doped er2o3

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.