LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact of surfactants on electrical conduction and preferred orientation of spray-pyrolysed nanostructured SnO2 thin films for LPG and ammonia sensing

Photo by introspectivedsgn from unsplash

SnO2 nanostructured thin films by spray pyrolysis technique have been successfully synthesised with surfactants isopropyl alcohol (IPA) and sodium dodecyl sulphate (SDS) independently. The effect of surfactants on the structural,… Click to show full abstract

SnO2 nanostructured thin films by spray pyrolysis technique have been successfully synthesised with surfactants isopropyl alcohol (IPA) and sodium dodecyl sulphate (SDS) independently. The effect of surfactants on the structural, and morphological properties of SnO2 films are investigated by different techniques such as X-ray diffraction, field emission scanning electron microscopy, and high resolution transmission electron microscopy. The deposited tetragonal rutile-phased SnO2 thin films are benefited by morphological modifications along with grain size reduction on changeover of IPA to SDS in the precursor. The sensing properties of the samples are investigated for LPG and NH3 at different operating temperatures. For a concentration of 500 ppm, the SDS employed film shows a maximum response of 96.7% for LPG and 86.8% for ammonia, at an operating temperature of 350 °C. By using SDS, the LPG sensing temperature could be lowered to 200 °C. The charge transport in the films is analysed by studying the dc and ac electrical conduction and a feasible mechanism has been envisaged in relation to the enhanced sensing characteristics of the films. By studying the dielectric constant variation with frequency and by analysing the exponent factor change, it is confirmed that multi-hopping process is responsible for conduction in the films.

Keywords: thin films; lpg ammonia; microscopy; sno2 thin; conduction

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.