LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Post-treatment of Nb2O5 compact layer in dye-sensitized solar cells for low-level lighting applications

Photo from wikipedia

Introduction of an ultrathin compact layer in dye-sensitized solar cells (DSSCs) can improve the cell efficiency under standard one sun illumination (> 100,000 lx). Herein, an ultrathin Nb2O5 layer is deposited… Click to show full abstract

Introduction of an ultrathin compact layer in dye-sensitized solar cells (DSSCs) can improve the cell efficiency under standard one sun illumination (> 100,000 lx). Herein, an ultrathin Nb2O5 layer is deposited on the TiO2-coated photoanode using a facial dip-coating method and its effects on the cell efficiency under a low level of light intensity (300–6000 lx) is studied. The results show that the ultrathin Nb2O5 layer helps the DSSCs to improve their power conversion efficiency (PCE) through different ways under standard one sun and low power illuminations. Under strong one sun illumination, the PCE of DSSC is improved by improving the short-circuit current density (JSC) which can be attributed to an increment of the surface area of photoanode for more dye adsorption and the blocking effect of Nb2O5. Under low power illumination, the introduction of Nb2O5 blocking layer improves the fill factor by effectively suppressing the charge recombination on the photoanode.

Keywords: layer dye; compact layer; sensitized solar; layer; dye sensitized; solar cells

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.