Given the versatility and value of the semiconductor composites for photocatalysis, we reported a new, friendly environment, high specific surface area material of the graphene quantum dots/hollow titanium dioxide nanosphere… Click to show full abstract
Given the versatility and value of the semiconductor composites for photocatalysis, we reported a new, friendly environment, high specific surface area material of the graphene quantum dots/hollow titanium dioxide nanosphere (GQDs/H-TiO2) composites which are synthesized through a simple hydrothermal method. GQDs (~ 5 nm) exhibit highly photoluminescent and widely visible light absorption properties. H-TiO2 has high surface area and abundant exposed active sites for photocatalysis. The research demonstrates that GQDs coupled on H-TiO2 can effectively enlarge the light absorption of the H-TiO2 to visible region (~ 650 nm) and enhance the electron–hole pair separation efficiency of GQDs/H-TiO2 composites owing to GQDs acting as an electron repository and electron transport bridge. In our delight, the photocurrent enhancement of newly prepared GQDs-3.0/H-TiO2 composite electrode was almost 3.5 times higher in comparison with that in pure H-TiO2 electrode at an applied voltage of 0.5 V using Na2SO4 (0.5 M) solution as the electrolyte. In addition, the photocatalytic activity of the prepared GQDs-3.0/H-TiO2 (96.9%) on the degradation of Rhodamine B (RhB) was also significantly enhanced compared with that of pure H-TiO2 (33.3%) after 180 min. The protocol is suitable not only for the GQDs-modified semiconductors photocatalysts but also provides further insights to apply GQDs to other energy conversion devices.
               
Click one of the above tabs to view related content.