Loading of ZnFe2O4 on ultrathin MoS2 nanosheets were performed to enhance the photocatalytic activity and recovery property by a facile hydrothermal method. The ZnFe2O4/MoS2 photocatalysts showed a relatively high photocatalytic… Click to show full abstract
Loading of ZnFe2O4 on ultrathin MoS2 nanosheets were performed to enhance the photocatalytic activity and recovery property by a facile hydrothermal method. The ZnFe2O4/MoS2 photocatalysts showed a relatively high photocatalytic activity than ZnFe2O4 and MoS2 under visible light irradiation, and the degradation rate of tetracycline hydrochloride by the MoS2/ZnFe2O4-25% photocatalysts is up to 95%. Systematical characterization demonstrated that the synergistic effect of nanosheets structure of MoS2 and heterostructures formed by ZnFe2O4 and MoS2 could effectively enhance light absorption ability, increase reactive sites, inhibit recombination of the photo-generated electrons and holes, accelerate the photo-generated electrons transfer speed, and improve photocatalytic performance of the photocatalysts. The ZnFe2O4/MoS2 photocatalysts could be recovered quickly under the external magnetic field and reused four times with no significant decrease in photocatalytic activity. The ·O2− is the main active species.
               
Click one of the above tabs to view related content.