In this study, novel Ni–Cu–Zn ferrites with the chemical formula [Ni0.6Zn0.4][Cu0.2CoxFe1.8−x]O4 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25) doped with Co2+ ions were designed and manufactured by standard solid-state reaction method.… Click to show full abstract
In this study, novel Ni–Cu–Zn ferrites with the chemical formula [Ni0.6Zn0.4][Cu0.2CoxFe1.8−x]O4 (x = 0, 0.05, 0.10, 0.15, 0.20, 0.25) doped with Co2+ ions were designed and manufactured by standard solid-state reaction method. The magnetic properties, surface characteristics, and ion occupancy of ferrites were studied by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and vibrating sample magnetometer (VSM), and we explained the different mechanisms of the results and the relationship between magnetic properties and microstructures. For the obtained samples, cobalt ions entered the lattice, and all samples were characterized as spinel structures. As the doping amount of Co2+ ions increases, the lattice constant and volume of the sample also increases. With an appropriate doping level, Co2+ ions-doped Ni–Cu–Zn ferrites can maintain higher saturation magnetization, higher magnetic permeability, and lower hysteresis loss. When x ≤ 0.1, the saturation magnetization Ms increases significantly as the doping amount of Co2+ ions increases, but when x > 0.1, the value decreases. The experimental results show that the saturation magnetization value is 118.08 emu/g, the magnetic permeability value is 39.47 H/m, and the hysteresis loss is 1.192 mW/cm3 at an optimum doping amount. Therefore, the sample achieves the best magnetic properties when the doping amount is 0.1.
               
Click one of the above tabs to view related content.