A switching memory device based on functionalized gold nanoparticles (AuNPs) and hexagonal copper sulfide nanocrystals (CuS), finely blended in polymethylmethacrylate matrix (PMMA), is herein presented. A two-electrode sandwich architecture has… Click to show full abstract
A switching memory device based on functionalized gold nanoparticles (AuNPs) and hexagonal copper sulfide nanocrystals (CuS), finely blended in polymethylmethacrylate matrix (PMMA), is herein presented. A two-electrode sandwich architecture has been implemented using aluminum top and bottom electrodes and a polymeric insulating layer based on PMMA/AuNPs/CuS. The device showed memory storage capabilities suitable for (Read Only Memory) ROM applications and behaves as a typical Write-Once, Read-Many-times (WORM) device. The results obtained with the blend containing AuNPs and/or CuS were compared with pure PMMA. By a voltage ramp in the range ± 9 V, it was possible to permanently change the electrical resistance between the electrodes yielding an ON/OFF current ratio above 10 5 with long-term stability over the whole experiment duration (30 days).
               
Click one of the above tabs to view related content.