LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Modified polymer optical fiber sensors for crude oil refractive index monitoring

Photo from archive.org

The oil concentration as a petroleum quality parameter is an eternal mystery that determines the oil value. We report detection of crude oil refractive index (RI) changes by modified polymer… Click to show full abstract

The oil concentration as a petroleum quality parameter is an eternal mystery that determines the oil value. We report detection of crude oil refractive index (RI) changes by modified polymer optical fiber (POF) sensor which is prepared via removing the majority of cladding part until ~ 100 nm thickness remains followed by the deposition of discontinuous silver (Ag) nanofilm as an inner layer (~ 20 nm thicknesses) and coating with different shapes of zinc oxide (ZnO) nanostructures including nanoparticles and horizontally and vertically oriented nanorods as an outer layer. Upon conversion from ZnO nanoparticles to vertically oriented ZnO nanorods, the rms roughness, optical band gap, and light transmittance are varied from ~ 23 to ~ 346 nm, ~ 3.45 to ~ 3.20 eV, and 31 to 27%, respectively. The higher sensing performance is obtained for the probe coated with vertically aligned ZnO nanorods at near-infrared wavelength and the value for intensity and wavelength sensitivity are 38 dB/RIU and 78 nm/RIU, respectively. This superior performance is originated from deep penetration of evanescent wave, high surface volume ratio, good crystallinity, adhesive interaction with crude oil molecules, large surface roughness, and high-order dispersion.

Keywords: modified polymer; oil refractive; polymer optical; crude oil; oil; refractive index

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.