Undoped zinc oxide (ZnO) and nitrogen-doped zinc oxide (NZO) thin films were prepared on transparent conducting oxide-coated glass substrates by employing sol–gel technique. The effect of different solvents and nitrogen… Click to show full abstract
Undoped zinc oxide (ZnO) and nitrogen-doped zinc oxide (NZO) thin films were prepared on transparent conducting oxide-coated glass substrates by employing sol–gel technique. The effect of different solvents and nitrogen doping on the optical, structural, and electrical properties was investigated by UV–visible absorption spectroscopy, atomic force microscopy (AFM), X-ray diffraction (XRD), profilometry, and Hall effect studies. ZnO films yielded transmittance above 85% and the bandgap of ZnO thin films decreased with doping. XRD pattern confirmed hexagonal wurtzite structure of ZnO. NZO thin films were found to be in the nano-thin film phase with thickness of 40 nm. Hall effect studies yielded carrier concentration of 1.2 × 1015 cm−3 and 2.03 × 1014 cm−3, respectively, for undoped and doped ZnO thin films. The changes in vibrational modes of ZnO due to nitrogen doping were detected using Fourier transform infrared (FTIR) analysis. It was found that p-type doping, leading to an improved surface morphology, led to a reduction in optical bandgap and an increased charge carrier mobility. The choice of the solvent was found to have a profound influence on the surface morphology, optical bandgap, tail states distribution, and charge carrier mobility.
               
Click one of the above tabs to view related content.