LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dielectric and ferroelectric properties of (Bi0.5Na0.5)0.94-δBa0.06Ti1−xNbxO3 lead-free ceramics

Photo from archive.org

Lead-free ceramics (Bi0.5Na0.5)0.94-δBa0.06Ti1−xNbxO3 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were prepared via a solid-state sintering method. The ceramics exhibit pure perovskite structure as x ≤ 0.04, while the ceramic with x = 0.05 has… Click to show full abstract

Lead-free ceramics (Bi0.5Na0.5)0.94-δBa0.06Ti1−xNbxO3 (x = 0, 0.01, 0.02, 0.03, 0.04, 0.05) were prepared via a solid-state sintering method. The ceramics exhibit pure perovskite structure as x ≤ 0.04, while the ceramic with x = 0.05 has a secondary phase. The rhombohedral (R)–tetragonal (T) morphotropic phase boundary exists in all the samples. The relative content of the T phase increases due to the Nb5+ doping. The ceramics show dense microstructures with mean grain sizes around 1–2 μm. The changes of dielectric constant and dielectric loss as a function of temperature for the unpoled and poled samples were compared. Two dielectric anomalies appear on the dielectric curves around the temperatures denoted as TRE and Tm. With the increase of Nb5+ amount, the values of TRE decrease and Tm increase. The Nb5+-doped ceramics exhibit better temperature stability of dielectric constant during a wide high-temperature window. The polarization hysteresis (P–E) loops change from typical ferroelectric loops for the sample with x = 0 to constricted P–E loops with increasing Nb5+ amount. The ceramic with x = 0.03 shows a maximum strain (Smax) of 0.55% and piezoelectric strain constant (d33*) of 675 pm/V.

Keywords: bi0 5na0; lead free; free ceramics; 06ti1 xnbxo3; ba0 06ti1; 5na0 ba0

Journal Title: Journal of Materials Science: Materials in Electronics
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.