LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Biocompatibility evaluation of heparin-conjugated poly(ε-caprolactone) scaffolds in a rat subcutaneous implantation model

Photo by gala_san from unsplash

Vascular grafts prepared from synthetic polymers have serious shortcomings that can be resolved by surface modification, such as by immobilizing heparin. In this study, the mechanical properties, biocompatibility, anticoagulation property,… Click to show full abstract

Vascular grafts prepared from synthetic polymers have serious shortcomings that can be resolved by surface modification, such as by immobilizing heparin. In this study, the mechanical properties, biocompatibility, anticoagulation property, and water contact angle of two heparin-conjugated poly(ε-caprolactone) scaffolds (PCL-hexamethylendiamine-heparin, PCL-HMD-H. PCL-lysine-heparin, PCL-LYS-H) were compared to identify a preferred heparin conjugation method. An evaluation of the subcutaneous tissue biocompatibility of the scaffolds demonstrated that PCL-HMD-H had better endothelial cell proliferation than the PCL-LYS-H and was therefore a promising scaffold candidate for use in vascular tissue-engineering.

Keywords: heparin; conjugated poly; caprolactone scaffolds; heparin conjugated; biocompatibility; poly caprolactone

Journal Title: Journal of Materials Science: Materials in Medicine
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.