LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing the sensitivity of multidimensional NMR experiments by using triply-compensated π pulses

Photo from archive.org

In multidimensional solution NMR experiments, π pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during π… Click to show full abstract

In multidimensional solution NMR experiments, π pulses are used extensively for inversion and refocusing operations on 1H, 13C and 15N nuclei. Pulse miscalibration, off-resonance effects, and J-coupling evolution during π pulse execution result in severe signal losses that are exacerbated at high magnetic fields. Here, we report the implementation of a triply-compensated π pulse (G5) optimized for both inversion and refocusing in widely used 2- and 3-dimensional experiments. By replacing most of the hard π pulses, adiabatic or composite pulses on the 1H, 13C and 15N channels with G5 pulses, we obtained signal enhancements ranging from 80 to 240%. We anticipate that triply-compensated pulses will be crucial for improving the performance of multidimensional and multinuclear pulse sequences at ultra-high fields.

Keywords: triply compensated; enhancing sensitivity; nmr; nmr experiments; compensated pulses; sensitivity multidimensional

Journal Title: Journal of Biomolecular NMR
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.