Our understanding of nanoparticle toxicity and fate in the aquatic environment is still patchy. In the present study, the toxicity of silver nanoparticles coated by Camellia sinensis (Cs) leaf extract… Click to show full abstract
Our understanding of nanoparticle toxicity and fate in the aquatic environment is still patchy. In the present study, the toxicity of silver nanoparticles coated by Camellia sinensis (Cs) leaf extract metabolites (Cs-AgNPs) was investigated in comparison with C. sinensis leaf extract and AgNO3 on a micro-crustacean, Ceriodaphnia cornuta, and a fish Poecilia reticulata. 100% mortality of C. cornuta was observed post-exposure to AgNO3 (40 µg/ml) if compared to the Cs leaf extract and Cs-AgNPs, showing 30 and 56% mortality at the same concentration, respectively. In P. reticulata 100% mortality was observed testing AgNO3 and Cs-AgNPs post-exposure to 1 and 30 µg/ml, respectively. Light microscopy and CLSM images showed the accumulation of nanoparticles in the intestine of C. cornuta treated with Cs-AgNPs at 40 µg/ml. In addition, histological observations confirmed the abnormal tissue texture in nanoparticle-exposed P. reticulata, if compared to control fishes. Furthermore, C. cornuta and P. reticulata treated with Cs-AgNPs showed DNA damages compared to the control. Overall, these findings indicated relevant limits about the employ of silver-based pesticides in the environment, and also pointed out the Cs-AgNPs were less toxic to C. cornuta and P. reticulata if compared to silver ions.
               
Click one of the above tabs to view related content.