Green fabricated nanoparticles often need to be encapsulated and stabilized, to ensure uniform dispersion in the aquatic environment and relevant larvicidal activity over time. However, recent research showed that nanoencapsulation… Click to show full abstract
Green fabricated nanoparticles often need to be encapsulated and stabilized, to ensure uniform dispersion in the aquatic environment and relevant larvicidal activity over time. However, recent research showed that nanoencapsulation processes led to a reduction of nanoparticle larvicidal efficacy. We used an extract of Argemone mexicana to reduce TiO2 nanoparticles, which were then capped with PSS/PAH (poly(styrene sulfonate)/poly(allylamine hydrochloride)). The toxic and repellent potential of the nanoparticles were compared to elucidate their potential effects against the Zika virus vector Aedes aegypti. Nanoparticles were characterized by biophysical methods including UV–Vis, EDX and FTIR spectroscopy, SEM, TEM, XRD and DLS analyses. In larvicidal and pupicidal experiments, TiO2 nanoparticles achieved LC90 values from 41.648 (larva I), to 71.74 ppm (pupa). Nanoencapsulated TiO2 achieved LC90 values from 39.16 (I), to 69.12 ppm (pupa). In adulticidal experiments, LC90 of TiO2 nanoparticles on Ae. aegypti was 10.31 ppm, while LC90 of nanoencapsulated TiO2 was 9.54 ppm. At 10 ppm, the repellency towards Ae. aegypti was 80.43% for TiO2 nanoparticles, and 88.04% for nanoencapsulated TiO2. This research firstly highlighted the promising potential of PSS/PAH encapsulation, leading to the production of highly effective titania nanostructures, if compared to titania nanoparticles synthesized with eco-friendly routes without further stabilization.
               
Click one of the above tabs to view related content.