Recently, we developed a novel endotracheal catheter with functional cuff (ECFC). Using such an ECFC and a regular ICU ventilator, we were able to generate clinically relevant tidal volume in… Click to show full abstract
Recently, we developed a novel endotracheal catheter with functional cuff (ECFC). Using such an ECFC and a regular ICU ventilator, we were able to generate clinically relevant tidal volume in a lung model and adult human sized animal. This ECFC allows co-axial ventilation without using a jet ventilator. The aim of this study was to determine if ECFC also could generate clinically relevant positive end expiratory pressure (PEEP). The experiment was conducted on a model lung and artificial trachea. Lung model respiratory mechanics were set to simulate those of an adult human being. The tip of the distal end of ECFC 14 or 19 Fr catheter was positioned in the artificial trachea 3 cm above the carina. The proximal end of ECFC was connected to an ordinary ICU ventilator. With 14 Fr catheter at respiratory rate 10 bpm, PEEP 0, 2.9, 8.2, 12.9 cmH2O was generated at preset PEEP 0, 5, 10, 15 cmH2O respectively and tidal volume was up to 393.4 ml. With 19 Fr catheter, PEEP was 0, 2.8, 7.6, 12.3 cmH2O, at preset PEEP 0, 5, 10, 15 cmH2O respectively and the tidal volume was up to 667.3 ml. With 14 Fr catheter at respiratory rate 20 bpm, PEEP was 0, 3.9, 9.6, 14.6 cmH2O at preset PEEP 0, 5, 10, 15 cmH2O respectively and tidal volume was up to 188.8 ml. With 19 Fr catheter, PEEP was 0, 3.6, 8.9, 13 cmH2O, at preset PEEP 0, 5, 10, 15 cmH2O respectively and tidal volume was up to 345.3 ml. ECFC enables clinicians to generate not only adequate tidal volume but also clinically relevant PEEP via co-axial ventilation using an ordinary ICU ventilator.
               
Click one of the above tabs to view related content.