LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Photoplethysmography-derived approximate entropy and sample entropy as measures of analgesia depth during propofol–remifentanil anesthesia

Photo by nervum from unsplash

The ability to monitor the physiological effect of the analgesic agent is of interest in clinical practice. Nonstationary changes would appear in photoplethysmography (PPG) during the analgesics-driven transition to analgesia.… Click to show full abstract

The ability to monitor the physiological effect of the analgesic agent is of interest in clinical practice. Nonstationary changes would appear in photoplethysmography (PPG) during the analgesics-driven transition to analgesia. The present work studied the properties of nonlinear methods including approximate entropy (ApEn) and sample entropy (SampEn) derived from PPG responding to a nociceptive stimulus under various opioid concentrations. Forty patients with ASA I or II were randomized to receive one of the four possible remifentanil effect-compartment target concentrations (Ceremi) of 0, 1, 3, and 5 ng·ml−1 and a propofol effect-compartment target-controlled infusion to maintain the state entropy (SE) at 50 ± 10. Laryngeal mask airway (LMA) insertion was applied as a standard noxious stimulation. To optimize the performance of ApEn and SampEn, different coefficients were carefully evaluated. The monotonicity of ApEn and SampEn changing from low Ceremi to high Ceremi was assessed with prediction probabilities (PK). The result showed that low Ceremi (0 and 1 ng·ml−1) could be differentiated from high Ceremi (3 and 5 ng·ml−1) by ApEn and SampEn. Depending on the coefficient employed in algorithm: ApEn with k = 0.15 yielded the largest PK value (0.875) whereas SampEn gained its largest PK of 0.867 with k = 0.2. Thus, PPG-based ApEn and SampEn with appropriate k values have the potential to offer good quantification of analgesia depth under general anesthesia.

Keywords: analgesia depth; entropy; approximate entropy; sample entropy; apen sampen; photoplethysmography

Journal Title: Journal of Clinical Monitoring and Computing
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.