LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The traveling salesman problem on grids with forbidden neighborhoods

Photo from archive.org

We introduce the traveling salesman problem with forbidden neighborhoods (TSPFN). This is an extension of the Euclidean TSP in the plane where direct connections between points that are too close… Click to show full abstract

We introduce the traveling salesman problem with forbidden neighborhoods (TSPFN). This is an extension of the Euclidean TSP in the plane where direct connections between points that are too close are forbidden. The TSPFN is motivated by an application in laser beam melting. In the production of a workpiece in several layers using this method one hopes to reduce the internal stresses of the workpiece by excluding the heating of positions that are too close. The points in this application are often arranged in some regular (grid) structure. In this paper we study optimal solutions of TSPFN instances where the points in the Euclidean plane are the points of a regular grid. Indeed, we explicitly determine the optimal values for the TSPFN and its associated path version on rectangular regular grids for different minimal distances of the points visited consecutively. For establishing lower bounds on the optimal values we use combinatorial counting arguments depending on the parities of the grid dimensions. Furthermore we provide construction schemes for optimal TSPFN tours for the considered cases.

Keywords: salesman problem; forbidden neighborhoods; problem grids; traveling salesman

Journal Title: Journal of Combinatorial Optimization
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.