We analyse pinned front and pulse solutions in a singularly perturbed three-component FitzHugh–Nagumo model with a small jump-type heterogeneity. We derive explicit conditions for the existence and stability of these… Click to show full abstract
We analyse pinned front and pulse solutions in a singularly perturbed three-component FitzHugh–Nagumo model with a small jump-type heterogeneity. We derive explicit conditions for the existence and stability of these type of pinned solutions by combining geometric singular perturbation techniques and an action functional approach. Most notably, in certain parameter regimes we can explicitly compute the pinning distance of a localised solution to the defect.
               
Click one of the above tabs to view related content.