LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens

Photo from wikipedia

Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect–pathogen interactions, considerable… Click to show full abstract

Plants play an important role in the interactions between insect herbivores and their pathogens. Since the seminal review by Cory and Hoover (2006) on plant-mediated effects on insect–pathogen interactions, considerable progress has been made in understanding the complexity of these tritrophic interactions. Increasing interest in the areas of nutritional and ecological immunology over the last decade have revealed that plant primary and secondary metabolites can influence the outcomes of insect–pathogen interactions by altering insect immune functioning and physical barriers to pathogen entry. Some insects use plant secondary chemicals and nutrients to prevent infections (prophylactic medication) and medicate to limit the severity of infections (therapeutic medication). Recent findings suggest that there may be selectable plant traits that enhance entomopathogen efficacy, suggesting that entomopathogens could potentially impose selection pressure on plant traits that improve both pathogen and plant fitness. Moreover, plants in nature are inhabited by diverse communities of microbes, in addition to entomopathogens, some of which can trigger immune responses in insect herbivores. Plants are also shared by numerous other herbivorous arthropods with different modes of feeding that can trigger different defensive responses in plants. Some insect symbionts and gut microbes can degrade ingested defensive phytochemicals and be orally secreted onto wounded plant tissue during herbivory to alter plant defenses. Since non-entomopathogenic microbes and other arthropods are likely to influence the outcomes of plant–insect–entomopathogen interactions, I discuss a need to consider these multitrophic interactions within the greater web of species interactions.

Keywords: evolutionary ecology; multitrophic interactions; plant; plants insect; ecology; insect herbivores

Journal Title: Journal of Chemical Ecology
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.