AbstractWe have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The… Click to show full abstract
AbstractWe have monitored the thermal evolution of the proton irradiated structure of W–5 wt% Ta alloy by in-situ annealing in a transmission electron microscope at fusion reactor temperatures of 500–1300 °C. The interstitial-type a/2<111> dislocation loops emit self-interstitial atoms and glide to the free sample surface during the early stages of annealing. The resultant vacancy excess in the matrix originates vacancy-type a/2<111> dislocation loops that grow by loop and vacancy absorption in the temperature range of 600–900 °C. Voids form at 1000 °C, by either vacancy absorption or loop collapse, and grow progressively up to 1300 °C. Tantalum delays void formation by a vacancy-solute trapping mechanism.
               
Click one of the above tabs to view related content.