A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC,… Click to show full abstract
A simple solid state reaction technique was employed for the preparation of polycrystalline luminophors of p-terphenyl containing different amounts of perylene followed by spectral characterization techniques viz. XRD, SEM, TGA-DSC, UV–Visible spectroscopy, thermo-electrical conductivity, fluorescence spectroscopy, fluorescence life time spectroscopy and temperature dependent fluorescence. X-ray diffraction profiles of the doped p-terphenyl reveal well-defined and sharp peaks indicate homogeneity and crystallinity. The SEM micrograph of pure p-terphenyl exhibit flakes like grains and then compact and finally gets separately with perylene amounts. The observed results indicate that closed packed crystal structures of doped p-terphenyl during crystal formation. The band gaps estimated from UV–visible spectroscopy decreased from 5.20 to 4.10 eV, while thermo-electrical conductivity increases with perylene content. The fluorescence spectra showed partial quenching of p-terphenyl fluorescence and simultaneously sensitization of perylene fluorescence at the excitation wavelength of p-terphenyl (290 nm) due to excitation energy transfer from p-terphenyl to perylene. The observed sensitization results are in harmony with intense blue color seen in fluorescence microscopy images and has high demand in scintillation process.
               
Click one of the above tabs to view related content.