LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Substituent Effect on AIE mechanism of two coumarin derivatives: uncommon TICT fluorescence in aggregation state.

Photo by kattrinnaaaaa from unsplash

Two coumarin derivatives, 7-diethylamino-3-(4-nitrophenyl)coumarin (DNC) and 7-hydroxy-3-(4-nitrophenyl)coumarin (HNC), were synthesized via Knoevenagel condensation of salicylaldehyde derivatives with 4-nitrophenylacetonitrile and then cyclization reaction. Both of them were characterized by single-crystal X-ray… Click to show full abstract

Two coumarin derivatives, 7-diethylamino-3-(4-nitrophenyl)coumarin (DNC) and 7-hydroxy-3-(4-nitrophenyl)coumarin (HNC), were synthesized via Knoevenagel condensation of salicylaldehyde derivatives with 4-nitrophenylacetonitrile and then cyclization reaction. Both of them were characterized by single-crystal X-ray diffraction. The molecules of DNC are stacked via π-π interaction, while the hydrogen bond interactions instead of π-π interaction were observed in the crystal packing of HNC. Both of DNC and HNC showed solvatochromic properties and aggregation-induced emission (AIE) activities, but the AIE characteristics of them were entirely different. HNC exhibited an AIE phenomenon as the result of the restriction of twisted intramolecular charge transfer (TICT), while DNC emitted peculiar dual fluorescence which was assigned to the emission based on the inhibition of TICT state formation and the emission from the TICT state respectively.

Keywords: aie; two coumarin; coumarin; fluorescence; state; coumarin derivatives

Journal Title: Journal of fluorescence
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.