LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

An adaptive, multivariate partitioning algorithm for global optimization of nonconvex programs

Photo by zero_arw from unsplash

In this work, we develop an adaptive, multivariate partitioning algorithm for solving nonconvex, Mixed-Integer Nonlinear Programs (MINLPs) with polynomial functions to global optimality. In particular, we present an iterative algorithm… Click to show full abstract

In this work, we develop an adaptive, multivariate partitioning algorithm for solving nonconvex, Mixed-Integer Nonlinear Programs (MINLPs) with polynomial functions to global optimality. In particular, we present an iterative algorithm that exploits piecewise, convex relaxation approaches via disjunctive formulations to solve MINLPs that is different than conventional spatial branch-and-bound approaches. The algorithm partitions the domains of variables in an adaptive and non-uniform manner at every iteration to focus on productive areas of the search space. Furthermore, domain reduction techniques based on sequential, optimization-based bound-tightening and piecewise relaxation techniques, as a part of a presolve step, are integrated into the main algorithm. Finally, we demonstrate the effectiveness of the algorithm on well-known benchmark problems (including Pooling and Blending instances) from MINLPLib and compare our algorithm with state-of-the-art global optimization solvers. With our novel approach, we solve several large-scale instances, some of which are not solvable by state-of-the-art solvers. We also succeed in reducing the best known optimality gap for a hard, generalized pooling problem instance.

Keywords: adaptive multivariate; partitioning algorithm; global optimization; multivariate partitioning; optimization

Journal Title: Journal of Global Optimization
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.