LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

GRASP with Variable Neighborhood Descent for the online order batching problem

Photo by szolkin from unsplash

The Online Order Batching Problem (OOBP) is a variant of the well-known Order Batching Problem (OBP). As in the OBP, the goal of this problem is to collect all the… Click to show full abstract

The Online Order Batching Problem (OOBP) is a variant of the well-known Order Batching Problem (OBP). As in the OBP, the goal of this problem is to collect all the orders that arrive at a warehouse, following an order batching picking policy, while minimizing a particular objective function. Therefore, orders are grouped in batches, of a maximum predefined capacity, before being collected. Each batch is assigned to a single picker, who collects all the orders within the batch in a single route. Unlike the OBP, this variant presents the peculiarity that the orders considered in each instance are not fully available in the warehouse at the beginning of the day, but they can arrive at the system once the picking process has already begun. Then, batches have to be dynamically updated and, as a consequence, routes must too. In this paper, the maximum turnover time (maximum time that an order remains in the warehouse) and the maximum completion time (total collecting time of all orders received in the warehouse) are minimized. To that aim, we propose an algorithm based in the combination of a Greedy Randomized Adaptive Search Procedure and a Variable Neighborhood Descent. The best variant of our method has been tested over a large set of instances and it has been favorably compared with the best previous approach in the state of the art.

Keywords: batching problem; order; online order; variable neighborhood; order batching

Journal Title: Journal of Global Optimization
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.