LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Study of a Polydimethylsiloxane (PDMS) Elastomer Generated by γ Irradiation: Correlation Between Properties (Thermal and Mechanical) and Structure (Crosslink Density Value)

Photo by miracleday from unsplash

The present study investigates the structural modification of polydimethylsiloxane (PDMS) with a molecular weight of 35 kDa, using varying high doses of gamma irradiation. Elastomeric structures with different crosslinked density values… Click to show full abstract

The present study investigates the structural modification of polydimethylsiloxane (PDMS) with a molecular weight of 35 kDa, using varying high doses of gamma irradiation. Elastomeric structures with different crosslinked density values were obtained as a function of the gamma irradiation dose (250, 300, 350 and 400 kGy). The structural characterization of the obtained elastomers was performed by employing Fourier Transform Infrared, 29Si Magic Angle Spinning Nuclear Magnetic Resonance and X-Ray Diffraction (FTIR, 29Si MAS NMR and XRD), showing integration with the polymer chains by siloxane crosslinks (Type-Y) and methylene crosslinks (Type-H). The mechanical and thermal characterizations were carried out by employing dynamical-mechanical analysis (DMA) and modulated differential scanning calorimetry (MDSC). The results showed an important correlation between the thermo-mechanical behavior and the irradiation dose. The thermal stability, analyzed by a thermo-gravimetric analysis (TGA), exhibited interesting behavior that suggested a direct correlation between the decomposition temperature and the structure generated by the gamma irradiation. These results suggest that the obtained elastomers could potentially be considered shape changing materials (SCM).

Keywords: irradiation; gamma irradiation; polydimethylsiloxane pdms; density; correlation; structure

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.