In this paper, two type silica hollow fibers were synthesized through a soft template and hard template directing route respectively, and the super paramagnets was synthesized by thermal decomposition. The… Click to show full abstract
In this paper, two type silica hollow fibers were synthesized through a soft template and hard template directing route respectively, and the super paramagnets was synthesized by thermal decomposition. The obtained silica hollow fiber and super paramagnets were characterized by XRD, N2 adsorption, SEM, TEM, EDS and XPS respectively. The ship-in-bottle type immobilized horseradish peroxidase (HRP) was assembled by co-adsorption of super paramagnets and HRP into the pore channel of silica hollow fiber in reverse microemulsion media. The effects of various parameters on enzyme activity of ship-in-bottle type immobilized HRP, including morphology, water content (ω0), super paramagnets concentration, HRP concentration, adsorption time, pH, crosslinking time and glutaraldehyde concentration were discussed in detailed. Moreover, the degradation performance of dichlorodiphenyltrichloroethane (DDT) by HRP immobilized on silica hollow fiber and spherical nano-silica was evaluated.Graphical AbstractThe ship-in-bottle type immobilized HRP have been prepared by uniformly co-adsorption of super paramagnets and HRP into the pore channel of silica hollow fiber with high enzyme activity, as evidenced by HRTEM characterization, which can be employed to degrade DDT to low toxic organic compound with low molecular weight.
               
Click one of the above tabs to view related content.