LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Copper Nanoparticles: Synthesis, Characterization and Its Application as Catalyst for p-Nitrophenol Reduction

Photo by scentspiracy from unsplash

Two approaches in the synthesis of copper nanoparticles (CuNPs), namely the gamma radiolysis and chemical reduction methods were investigated. The XRD analysis illustrated that the chemically prepared CuNPs using ascorbic… Click to show full abstract

Two approaches in the synthesis of copper nanoparticles (CuNPs), namely the gamma radiolysis and chemical reduction methods were investigated. The XRD analysis illustrated that the chemically prepared CuNPs using ascorbic acid were oxidized partly to cuprous oxide (Cu2O). The radiolytic method provides CuNPs in fully reduced and highly pure state as compared to chemical reduction method. The optimum radiation dose at which the CuNPs was formed at high purity is 300 kGy. Also, the TEM images indicated that the average particle size of the CuNPs using gamma radiolysis method (33.6 nm) was smaller than those obtained by chemical reduction method (39.9 nm). The catalytic activity of CuNPs was evaluated on the reduction of p-nitrophenol (p-NP). The prepared CuNPs by gamma radiolysis method were found to exhibit higher activity than those of conventional chemical reduction.

Keywords: reduction; chemical reduction; cunps; method; gamma radiolysis; copper nanoparticles

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.