LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis, Characterization and Magnetic Properties of Bi-metallic Copper Complex, as a Precursor for the Preparation of CuO Nanoparticles and Its Application for Removal of Arsenic from Water

Photo by a2eorigins from unsplash

AbstractThis work involved the synthesis of bimetallic complex of [Cu(bpy)3][Cu(dipic)2]·2H2O (1) where dipic is pyridine-2,6-dicarboxylic acid and bpy is 2,2′-bipyridine, through the reaction of [Cu(bpy)5]2+ with [Cu(dipic)2]2−. The structure of… Click to show full abstract

AbstractThis work involved the synthesis of bimetallic complex of [Cu(bpy)3][Cu(dipic)2]·2H2O (1) where dipic is pyridine-2,6-dicarboxylic acid and bpy is 2,2′-bipyridine, through the reaction of [Cu(bpy)5]2+ with [Cu(dipic)2]2−. The structure of complex (1) was characterized by, Fourier transform infrared spectroscopy (FT-IR), UV–Vis spectroscopy, atomic absorption spectroscopy (AAS), elemental analysis and conductivity measurement. Also, thermal behavior of the complex was studied by thermo-gravimetric analysis (TGA and DTA) and the morphology of the complex was studied by scanning electron microscopy technique (SEM). The complex (1) was used as a precursor for the preparation of ferromagnetic nanoparticles of CuO by thermal decomposition at 600 °C. CuO nanoparticles were characterized by FT-IR spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Magnetic properties of complex (1) and CuO nanoparticles were studied at room temperature by vibrating sample magnetometer (VSM). The results of VSM indicate paramagnetic and ferromagnetic feature of and CuO nanoparticles, respectively. CuO nanoparticles with specific surface area of 69 m2/g and particle size of 20 nm were used as adsorbents to remove arsenic from contaminated water. The highest amount of arsenic adsorption on the surface of CuO nanoparticles occurs at pH 8 to 9 and contact time of 40 min. Based on this study, copper oxide nanoparticles can be effectively used to remove arsenic from water.Graphical AbstractMagnetization curves at 298 K (a) complex of [Cu(bpy)3][Cu(dipic)2]·2H2O: (b) nanoparticles of CuO

Keywords: microscopy; water; cuo nanoparticles; spectroscopy; precursor preparation

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.