LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Structural, Electrical and Magnetic Properties of Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0–0.3) Perovskites

Photo from archive.org

Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0, 0.1, 0.2, 0.3) perovskites have been successfully synthesized using a standard solid state reaction technique. The structural and morphological characterizations have been carried out using X-ray diffraction (XRD)… Click to show full abstract

Ba1−xAlxTi0.5Mn0.5O3 (x = 0.0, 0.1, 0.2, 0.3) perovskites have been successfully synthesized using a standard solid state reaction technique. The structural and morphological characterizations have been carried out using X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) techniques. XRD patterns confirm the tetragonal structure of the crystals and the unit cell volume is found to be decreased with the increase in Al content. FESEM images indicate that the grain sizes of the samples are found to be increased with the increase in Al content in the sample that influence on the electrical and magnetic properties of the perovskites. The electrical property is assessed with dielectric constant and AC conductivity measurements. The values of dielectric constants are found to be decreased with the increase in frequency form 1 to 100 kHz and then remain constant for all the samples and x = 0.1 composition shows maximum value. The dispersion of dielectric constants in low frequency is explained on the basis of Maxwell–Wanger model in agreement with Koop’s phenomenological theory. Permeability shows a linear increase with increasing Al substituent which is explained on the basis of variation of oxygen vacancy and grain size of the samples.

Keywords: xalxti0 5mn0; 5o3 perovskites; magnetic properties; ba1 xalxti0; electrical magnetic; 5mn0 5o3

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.