LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Synthesis and Characterization of Porous Carbon/Nickel Oxide Nanocomposites for Gas Storage and Negatronic Devices

Photo from archive.org

Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst.… Click to show full abstract

Porous organic/inorganic nanocomposites were synthesized by sol–gel technique after the incorporation of nickel oxide (NiO) nanoparticles in carbon composite based on pyrogallol and formaldehyde (PF) using picric acid as catalyst. After a drying step, the samples were heated during 2 h at different pyrolysis temperatures from 600 to 1000 °C in tubular furnace under nitrogen atmosphere. The XRD pattern exhibit that PF composite is amorphous even after thermal treatment at 1000 °C. On the other hand, the PF/NiO nanocomposites are crystallized with the appearance of the graphite structure at high pyrolysis temperature. The gas adsorption capacities for CO2 indicate that the PF composite has a tendency to adsorb CO2 higher than PF/NiO nanocomposite. In fact, the maximum value of capacity is of the order 7.5 mmol/g in PF composite and 6.5 mmol/g in PF/NiO nanocomposite. The dc conductivity shows the dominance of percolation phenomenon and explained by two models; the three dimensions variable range hopping and the nearest neighbor hopping. The voltage–current V(I) characteristics show the presence of negative differential resistance at room measurement temperature in PF/NiO-625 °C sample. The ac conductance is attributed to different origins, so it is decried by two models, like hopping conduction mechanism in PF-675 °C composite and small polaron hopping model in PF/NiO-625 °C nanocomposite.

Keywords: carbon nickel; characterization porous; gas; nickel oxide; porous carbon; synthesis characterization

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.