LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Multifunctional CuO Nanosheets for High-Performance Supercapacitor Electrodes with Enhanced Photocatalytic Activity

Photo from archive.org

This paper reports the facile hydrothermal approach to synthesize porous CuO nanosheets. Their crystalline phase, metallic vibrations, topography, morphology, pore size distribution and magnetic behavior has been studied in detail.… Click to show full abstract

This paper reports the facile hydrothermal approach to synthesize porous CuO nanosheets. Their crystalline phase, metallic vibrations, topography, morphology, pore size distribution and magnetic behavior has been studied in detail. Magnetic properties of nanosheets were studied at 300 K using vibrating sample magnetometer which indicates the superparamagnetic behavior with saturation magnetization of 2.46 emu g−1 for as prepared 2D nanostructures. The electrochemical spectroscopy of these sheets reveals that as prepared sheets have a specific capacitance of 1057 F g−1 at a current density of 2 A g−1 which is retained up to 93% even after 4000 cycles. Furthermore, photocatalytic activity along with electrochemical properties of the as-obtained nanostructures were studied for various organic dyes. The high value of saturation magnetization, high specific capacitance and better dye degradation properties of the developed CuO nanosheets make the developed materials good for application in energy storage devices, astonishing electrode material and photocatalyst for degradation of organic dyes in visible light.

Keywords: multifunctional cuo; photocatalytic activity; nanosheets high; cuo nanosheets; high performance

Journal Title: Journal of Inorganic and Organometallic Polymers and Materials
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.