LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of a Ti/Au TES Microcalorimeter Array as a Backup Sensor for the Athena/X-IFU Instrument

Photo from wikipedia

We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The… Click to show full abstract

We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The array is read out by a frequency-division multiplexing readout system using a 1–5 MHz frequency band. Extensive research collaborations between NASA/Goddard and SRON have led to new design rules for microcalorimeters such as low resistivity of the superconductor bilayer, moderately high ohmic resistance of the TES by changing the aspect ratio and no extra metal strips. We have improved our detector fabrication process according to these design principles and produced TES arrays. Although single-pixel characterizations of these arrays are ongoing, the best energy resolution of 2.0 eV for 5.9 keV X-ray has been observed with a 120 × 20 μm 2 TES with a normal resistance of 150 mΩ, biased at 2.2 MHz frequency. This shows that our Ti/Au TES array has a potential to fulfill the detector requirements of the X-IFU instrument.

Keywords: array; microcalorimeter array; ifu instrument; backup; tes microcalorimeter; sensor

Journal Title: Journal of Low Temperature Physics
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.