We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The… Click to show full abstract
We are developing a transition edge sensor (TES) microcalorimeter array based on a Ti/Au superconducting bilayer, as a backup option for the X-IFU instrument on the Athena X-ray observatory. The array is read out by a frequency-division multiplexing readout system using a 1–5 MHz frequency band. Extensive research collaborations between NASA/Goddard and SRON have led to new design rules for microcalorimeters such as low resistivity of the superconductor bilayer, moderately high ohmic resistance of the TES by changing the aspect ratio and no extra metal strips. We have improved our detector fabrication process according to these design principles and produced TES arrays. Although single-pixel characterizations of these arrays are ongoing, the best energy resolution of 2.0 eV for 5.9 keV X-ray has been observed with a 120 × 20 μm 2 TES with a normal resistance of 150 mΩ, biased at 2.2 MHz frequency. This shows that our Ti/Au TES array has a potential to fulfill the detector requirements of the X-IFU instrument.
               
Click one of the above tabs to view related content.