In this work we prove that weak solutions constructed by a variational multiscale method are suitable in the sense of Scheffer. In order to prove this result, we consider a… Click to show full abstract
In this work we prove that weak solutions constructed by a variational multiscale method are suitable in the sense of Scheffer. In order to prove this result, we consider a subgrid model that enforces orthogonality between subgrid and finite element components. Further, the subgrid component must be tracked in time. Since this type of schemes introduce pressure stabilization, we have proved the result for equal-order velocity and pressure finite element spaces that do not satisfy a discrete inf-sup condition.
               
Click one of the above tabs to view related content.