LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Impact-Based Nonlinear Acoustic Testing for Characterizing Distributed Damage in Concrete

Photo by portablepeopleproductions from unsplash

Nonlinear acoustics-based nondestructive evaluation (NDE) techniques have shown great promise for identification of microstructure and microcracking in a wide spectrum of materials (e.g., metals, metallic alloys, composites, rocks, cementitious materials).… Click to show full abstract

Nonlinear acoustics-based nondestructive evaluation (NDE) techniques have shown great promise for identification of microstructure and microcracking in a wide spectrum of materials (e.g., metals, metallic alloys, composites, rocks, cementitious materials). This class of NDE techniques relies on measuring nonlinearity parameters by analyzing the acoustic response of materials that are dynamically perturbed at microstrain levels (strain $$\sim $$∼10$$^{-6}$$-6–10$$^{-5})$$-5). Using a mechanical impact to induce microstrain is advantageous for concrete testing because it allows for testing of larger concrete specimens offering potential field transportability. In this paper, two impact-based nonlinear acoustic testing techniques are compared: impact-based nonlinear resonant acoustic spectroscopy (INRAS) and dynamic acousto-elastic testing (IDAET). INRAS gives a global measure of sample hysteretic nonlinearity while IDAET provides a local but comprehensive account of nonlinear elastic properties. We discuss single- versus multi-impact INRAS and propose a physics-based model to describe the data from single-impact INRAS. Then, we introduce IDAET and demonstrate how to extract both classical and non-classical nonlinear parameters from a limited set of test results. INRAS and IDAET are used to monitor the evolution of damage in two sets of concrete samples undergoing freeze-thaw (FT) cycles. Nonlinear parameters extracted from the two tests show good agreement; all exhibiting far more sensitivity to distributed FT damage than standard (i.e. linear) resonance frequency measurements. By presenting alternative ways to collect and analyze the impact-based nonlinear acoustic test data, this study will help in broadening their use and extending their applications to quantitative in-situ evaluation.

Keywords: based nonlinear; impact; impact based; acoustic testing; nonlinear acoustic; distributed damage

Journal Title: Journal of Nondestructive Evaluation
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.