LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Bioalumina Nano Powder Extraction and its Applications for Sisal, Coir and Banana Hybrid Fiber Composites: Mechanical and Thermal Properties

Photo by olenkasergienko from unsplash

In the present environmental conditions bio usages has a vital importance in the society due to global warming and other environmental threats. In this work, alumina nano powder synthesized from… Click to show full abstract

In the present environmental conditions bio usages has a vital importance in the society due to global warming and other environmental threats. In this work, alumina nano powder synthesized from ‘Neem’ leaf’ is used in sisal, coir and banana fiber composites for the betterment of mechanical and thermal applications. Thermo gravimetric analysis (TGA) contemplated biosynthesized alumina nano powder (BSANP-C) has better thermal stability than other nano powders. The mechanical results verified the enhancement of tensile, flexural and impact strength for hybrid banana coir (HBC), hybrid sisal coir (HSC) and hybrid sisal banana (HSB) composites up to 3% BSANP-C addition. Hybrid combination at 5% nano substitution tends to decrease the mechanical properties of hybrid composites due to agglomeration of BSANP-C making uneven mixing of filler in the matrix. The addition of BSANP-C wt% up to 3 in HBC, HSC and HSB ascertain residual % improvement from 18.72 to 23.41%, 21.90 to 25.75% and 22.69 to 26.33%. BSANP-C addition at 5% decreased the degradation temperature, char residual % and endothermic peak due to agglomeration. SEM test was taken for morphological study of fractured surface of the hybrid composites.

Keywords: banana; nano powder; coir banana; fiber composites; sisal coir

Journal Title: Journal of Polymers and the Environment
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.