LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Competent, selective and high yield of 7-hydroxy-4-methyl coumarin over sulfonated mesoporous silica as solid acid catalysts

Photo from wikipedia

Highly ordered mesoporous MCM-41 and SBA-15 have been synthesized and functionalized with different amounts of propyl sulfonic acid groups using 3-mercaptopropyltrimethoxysilane as sulfur source. The synthesized catalysts have been well-characterized… Click to show full abstract

Highly ordered mesoporous MCM-41 and SBA-15 have been synthesized and functionalized with different amounts of propyl sulfonic acid groups using 3-mercaptopropyltrimethoxysilane as sulfur source. The synthesized catalysts have been well-characterized by different techniques such as XRD, FTIR and BET surface area and pore size distribution by BJH method. FTIR spectra of chemisorbed pyridine and temperature programmed desorption of NH3 techniques have been successfully used to characterize the acidic sites. The results showed that, both surface area, mean pore diameter and pore volume decrease as the extent of sulfonation increase. XRD results and TEM images confirm the stability of mesoporous long range order even after sulfonation process done. In addition, the study also showed that, sulfonation enhances the surface acidity and new moderate and strong acid sites were created. All the sulfonated catalysts under investigations have been found to be highly active and selective for the Pechmann condensation reaction of resorcinol with ethyl acetoacetate. More than 98% yield of 7-hydroxy-4-methyl coumarin was obtained with 100% selectivity. Presence of high number of moderate and strong Brönsted acid sites in sulfonated catalysts help in achieving high yields. Furthermore, the MCM-41 sulfonated catalysts showed higher catalytic performance due to their higher surface acidities.

Keywords: acid; methyl coumarin; yield hydroxy; hydroxy methyl

Journal Title: Journal of Porous Materials
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.