Heteroatom-containing porous carbon nanospheres with a high surface area were firstly fabricated by pyrolysis of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) nanospheres which were fabricated by a facile polycondensation between hexachlorocyclotriphosphazene and 4,4′-sulfonydiphenol. Then… Click to show full abstract
Heteroatom-containing porous carbon nanospheres with a high surface area were firstly fabricated by pyrolysis of poly(cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) nanospheres which were fabricated by a facile polycondensation between hexachlorocyclotriphosphazene and 4,4′-sulfonydiphenol. Then the porous carbon nanosphere-supported Pt nanoparticles (Pt NPs@C-PZS) were synthesized by a simple microwave reduction method, during which Pt NPs were highly dispersed on the surface of carbon supports. The surface morphologies and chemical composition of the as-obtained C-PZS and Pt NPs@C-PZS nanocomposites were characterized by SEM, TEM, XRD, XPS, and Raman spectroscopy. Characterization results showed that the Pt NPs with an average diameter of 2 nm was well anchored onto the surface of C-PZS nanospheres. In addition, the as-prepared Pt NPs@C-PZS nanocomposites exhibited an excellent catalytic capability towards the reduction of 4-nitrophenol to 4-aminophenol by excessive sodium borohydride (NaBH4) at room temperature.
               
Click one of the above tabs to view related content.